
Software Driven
Everything and

What It Will
Take to

Get There

THE REALITY OF TOTAL DIGITAL TRANSFORMATION

– What’s the ETA?
– The Great Software Divide

AN EMERGING SOFTWARE SOLUTION

– Low-Code Platforms—a Step in the Right Direction
– Part Way There
– Baked-In = Non-Responsive
– Responsive Low-Code Platforms
– Extensibility via Industry Standard Technologies
– Continuously Variable Applications (CVAs)

APPLICATION LIQUIDITY

Table of Contents

Page 02

One of the latest battle cries among IT thought leaders is “software-driven everything,”
a state of being at the zenith of digital transformation that sparks the imagination, but
which may not be realistic anytime soon. And while the topic of software-driven everything
makes for lively debate, what almost everyone will agree on is that, for most—if not all—
organizations, getting from where they are to a state where software drives every process
from the top to the bottom of an enterprise will be an enormous and expensive challenge.

THE REALITY OF TOTAL DIGITAL TRANSFORMATION

Not only will it require a methodology for lightning-fast
creation of new, custom business applications that define
workflow, codify best practices, and consolidate entire eco-
systems, but this avalanche of new business apps will need
added dimensionality—the ability to responsively adapt
to changing technical and business requirements without
having to be taken offline, updated, recompiled, linked, and
executed every time something changes, which, in today’s
business environment, would be constantly.

Page 03

What’s the ETA?

The Great Software Divide

So how far off is this futuristic world of software driven everything?
An answer is hard to give but not because of a lack of hardware, band-
width, or big ideas. Rather, the chasm to be crossed is inadequacies
in the current technologies and methodologies used to develop and
maintain software.

It’s been years now since Agile overtook the old Waterfall method of
software development, perhaps the biggest catalyst for this change
being shorter development cycles. And while there are lots of differ-
ent schools of Agile development, each, nonetheless, shares some
sizable shortcomings in regard to full-on digital transformation:

1. Agile development requires actual software engineers to write code,
which, of course, is time and resource intensive. Put another way,
while Agile is faster than Waterfall, it’s still nowhere near fast enough
to automate every little process in a company, at least not in most of
our lifetimes. Furthermore, given the sheer number of apps that will
need to be written, the gap between available and necessary software
engineers capable of this level of development is, at present, huge but
will get ever wider for the foreseeable future.

Page 04

2. Hand-coded software has to be compiled, linked, and executed. And it’s this reality—baked-in
feature sets—that may be the biggest short-coming of current software-development methodology
when juxtaposed with the sheer size and scope of full-on digital transformation.

Page 05

The bottom line is hand-coded apps simply can’t be produced fast enough to keep
up with status-quo requirements, let alone the exponentially larger requirements
of digital transformation. And these traditional, hand-coded, baked-hard-as-rock
apps lack the responsive characteristics necessary to function in today’s more liquid
business environment without constant upkeep. In fact, upkeep is arguably the real
rub, being a pernicious form of technical debt that would quickly eclipse the financial
upside of digital transformation.

AN EMERGING SOFTWARE SOLUTION

Low-Code Platforms—a Step in the Right Direction

Over the past several years, many pure-play Business Process Management
Suites (BPMS) have morphed into low-code process platforms, which can still be
used to automate processes and improve operational efficiency but which can
also be used to build composite apps offering broader value to entire business
ecosystems. This new breed of low-code platform is lighter and more nimble than
its BPM predecessors and requires much less upfront investment and long-term
commitment from customers.

Low-code platforms across the board utilize a point-and-click development envi-
ronment that allows citizen developers (power users but not necessarily software
engineers) to compose applications by dragging activities, forms, and other types
of controls onto a canvas and then configuring each to application specifications.
The result is an application model, a visual construct that incorporates any number
of on-premises-based systems as well as cloud-native services and which depicts
flow as well as inter-relationships between application components.

Page 06

Part Way There

Today’s low-code platforms address one of the problems listed above: low-code
apps can be built much faster than hand-coded apps, and they can be built by
people with less technical skill sets than actual software engineers, a fact which
dramatically increases available human resources. Shorter development cycles
and more hands on deck is definitely a step in the direction of software driven
everything.

However, the other, perhaps bigger problem mentioned above (actual digital
transformation will require software that can self adapt to continual changes)
will demand a technology far in advance of the current low-code standard, which
is code generation.

Page 07

Baked-In = Non-Responsive

Virtually all low-code platforms use a point-and-click approach that produces
application models. Most of today’s low-code platforms must then transform
the visual model into an actual software application through a process known as
code generation, which, as the name implies, converts the model into low-lev-
el computer code. This code must then be compiled, linked, and executed. In
other words, once a low-code app is deployed, it is no different than any other
hand-coded app, having baked-in features and functionality.

Page 08

Exacerbating the problems of “baked-in,” such apps, in order to run,
must be loaded in their entirety into a process (workflow) engine,
where they will live throughout execution. This permanent residence
in the engine accounts for much of the shortfall of today’s software
in regard to digital transformation, and here’s why:

When business or technical requirements change the state of each
running instance of the app must be preserved while the app is taken
out of memory. Modifications are then made to the model, at which
point, the model must once again go through the code-gen process.
The resulting modified code must then be recompiled, loaded back
into memory, and reconciled with the preserved state of each run-
ning instance of the app.

The sheer weight of the machinery involved in this endlessly recur-
ring cycle brings the digital-transformation problem into specific
relief: An app with baked-in features that must live, in its entirety, in
a process engine throughout execution is dysfunctional in an envi-
ronment where application characteristics must continually change,
primarily because baked apps must be manually updated. Again, in
the world of software driven everything, apps must be self adaptive,
eliminating the resources and accompanying expense of manual
maintenance.

Page 09

Responsive Low-Code Platforms

What’s needed, then, to catalyze software driven everything is a
new software development paradigm, one that satisfies the quan-
tity problem—lots of apps delivered fast—as well as the respon-
sive problem—software that can dynamically respond to the con-
stantly changing conditions of digital business.

Responsive is, of course, the hard part. Most low-code platforms
evolved from BPM suites and simply don’t have architectures
that support responsive-application development. One low-code
aPaaS that does is AgilePoint NX, which can be used to highlight
requisite responsive platform characteristics.

• Model-Driven VS. Code Generation

In contrast to code-gen-based systems, AgilePoint NX incorporates
a true, model-driven architecture. With this approach, each com-
ponent of a visual model constitutes metadata (stored in an XML
registry) that defines how an underlying chunk of code will work.
For example, as a developer drags an activity into a model, the rel-
ative positioning of the activity to other model components consti-
tutes metadata, and this metadata affects the underlying code. If a
developer changes the relative positioning of a component to other
components, the underlying code, in turn, gets modified to reflect the
change. Likewise, any operational characteristics provided by the de-
veloper (configurations typed into dialog windows) along with flow
lines between components constitute metadata, and all of it, taken in
totality, is abstracted into application features and functionality.

Page 10

• XML-Based Process Engine

As was mentioned above, with AgilePoint NX, the application model, itself, is XML. In execution, the
model (XML registry file) is fed directly into the process engine. Note that, in contrast to traditional
compiled apps, which must be fed into a process engine in their entirety, an AgilePoint XML-based
model can be processed one component at a time. This piece-by-piece approach reduces storage
and processing requirements, but, more importantly, enables components not currently in memory
to undergo modifications. Under any circumstances, any part of a model is in memory only while it’s
in use (for a fraction of a second at a time) and then is removed. And once a component is no longer
in memory, it can be modified.

• Runtime Updates

A model-driven architecture combined with an XML-based process engine results in apps that can
be modified at runtime—as new business conditions are pushed into the model, the underlying
code is modified, and the running application changes mid-flight. Depending on the application in
question, updates to components could be made manually—a system admin or, perhaps, a line man-
ager, entering data into component dialogs. But with digital-business apps, modifications are more
likely to be made programmatically, via feedback loops of fresh data from any of millions of devices
equipped with sensors and radio frequency tags.

If you’ve ever pulled a trailer up a steep mountain grade, you may have
experienced your vehicle repeatedly shifting back and forth between gears
in an attempt to find a ratio that is appropriate for constantly changing
requirements. One gear is too low, the other is too high. In contrast,
continuously variable transmissions (CVTs) offer infinite gearing ratios,
enabling a transmission, based on external data sources, to deliver the
optimal ratio at all times during the climb. Needless to say, the CVT
approach is way better.

In some ways, the difference between a five-speed automatic transmis-
sion and a CVT can be likened to the difference between baked apps and
responsive (continuously variable) apps. Baked apps offer a predefined set
of options to handle various conditions, but when actual conditions vary
from expected scenarios, the necessary permutations are not available.
The app can be taken offline and modified to account for new conditions
(think adding a couple of extra ratios to a transmission) but the same
problem still exists—the machinery of adaption is not well suited to a
liquid business environment.

Continuously Variable Applications (CVAs)

Page 11

In contrast, responsive apps are architected in such a way that they can dynamically recon-
figure on the fly to account for any number of changing business conditions and technical
requirements, much the way a continuously variable transmission can generate any gearing
ratio necessary to account for hundreds of external factors. Just as CVTs are way better than
regular transmissions, responsive apps are way better than baked apps, especially when it
comes to the requirements of a software-driven-everything organization.

APPLICATION LIQUIDITY

Regardless of the architecture that is used, software that is capable of cat-
alyzing complete digital transformation must be able to adapt to changes
without recompilation and the baggage that goes along with it. AgilePoint
NX utilizes a mode-driven architecture, a metadata abstraction layer, and a
stateless process engine to get the desired results. Other platform vendors
may get a similar result utilizing a different architectural design.

Page 12

Software Driven
Everything and

What It Will
Take to

Get There
To learn more about AgilePoint NX, the Responsive
Application Platform, visit www.agilepoint.com.

Request Trial Request Demo

http://agilepoint.com/resources-ebooks/
http://agilepoint.com/request-trial-lp/
http://agilepoint.com/demo-request-lp/

