
Digital Business will require
a Software Revolution

REVOLUTION REQUIRED

• The Four Forces

• Digital Business

• Implications of Digital Business

• What’s the ETA?

• The Great Software Chasm

AN EMERGING SOFTWARE SOLUTION

• Low-Code and Its Origins

• Part Way There

• Baked-In = Non-Responsive

• Responsive Low-Code Platforms

• Continuously Variable Applications (CVAs)

APPLICATION LIQUIDITY

Table of Contents

• THE 4 FORCES • DIGITAL BUSINESS
Understanding the Nexus is important because it’s a precursor
to understanding the term “digital business,” for which there
are any number of interpretations, depending on which facet of
digital business is in question. One broad definition of the over-
all concept states that digital business results from combining
the nexus of forces with the Internet of Things (IoT), creating a
world where people, businesses, and things become equal peers.

• IMPLICATIONS OF DIGITAL
 BUSINESS
The implications of this view of digital business are profound:
Consider a world where things, like people and businesses, will,
in fact, take on the characteristics of customers. This eventuality
is realized when sensors become so common that they are not
only in our devices and machines but in our clothing and in the
packaging of day-to-day items that we consume. Put another
way, “things,” when they become depleted or worn, may actually
initiate actions to replace themselves. In such a scenario, mar-
keters, then, would need to devise ways to influence things as
decision makers in billions of daily business transactions.

Furthermore, in this digital-business environment, requirements
for any given app could change any number of times a day as
billions of sensors monitor activity and push data to processing
hubs that index it, synthesize it, and feed it back to billions of
other devices running apps that need to be dynamically recon-
figured based on this veritable kaleidoscope of changing busi-
ness information.

the proliferation of mobile devices

the emergence of social platforms

the shift from on-premises based
software, infrastructure, and platforms
to cloud-native services

the explosion of data being generated along
with technologies capable of processing
massive datasets and identifying predictive
patterns hidden within them

A few years back,

Gartner began using the term

“Nexus”
to describe what it saw as the

four IT forces that are shaping

the lives of the world’s

inhabitants:

PAGE.3

REVOLUTION REQUIRED

REVOLUTION REQUIRED
• WHAT’S THE ETA?
How far off is this futuristic world of digital business? An answer is hard to give but not because
of a lack of hardware, bandwidth, or big ideas. Rather, the arrival of digital business is tough
to predict because of inadequacies in the current technologies and methodologies used to
develop software.

• THE GREAT SOFTWARE CHASM
It’s been years now since Agile overtook the old Waterfall method of software development,
perhaps the biggest catalyst for this change being shorter development cycles. And while there
are lots of different schools of Agile development that might be applied to any particular devel-
opment initiative, each, nonetheless, shares a couple of sizable shortcomings in regard to digital
business:

1. Agile development requires actual software engineers to write code, which, of course,
is time and resource intensive. Put another way, while Agile is faster than Waterfall, it’s
still nowhere near fast enough to catalyze the emergence of digital business. Furthermore,
given the sheer number of apps that will need to be written, the gap between available
and necessary software engineers capable of this level of development will get ever wider
for the foreseeable future.

2. Hand-coded software has to be compiled, linked, and executed. And it’s this reality—
baked-in feature sets—that may be the biggest short-coming of current software-develop-
ment methodology when juxtaposed with the looming requirements of digital business.

The bottom line is hand-coded apps can’t be produced fast enough to satisfy future demands,
nor do such apps have the responsive characteristics necessary to function in a global, data-
driven, digital nervous system that ebbs and flows and changes constantly.

PAGE.4

AN EMERGING SOFTWARE SOLUTION

• LOW-CODE AND ITS ORIGINS
Over the past several years, many pure-play Business Process Management Suites (BPMS) have morphed into low-code app plat-
forms, which can still be used to automate and improve operational efficiency but which can also be used to build composite apps
offering broader value to entire business ecosystems. This new breed of low-code platform is lighter and more nimble than its
BPM predecessors and requires much less upfront investment and long-term commitment from customers.

Low-code platforms across the board utilize a declarative environment that allows citizen developers (power users but not nec-
essarily software engineers) to compose applications by dragging activities, forms, and other types of controls onto a canvas and
then configuring each to application specifications. The result is an application model, a visual construct that incorporates any
number of on-premises-based systems as well as cloud-native services and which depicts flow as well as inter-relationships be-
tween application components.

PAGE.5

• PART WAY THERE
Today’s low-code platforms address one of the problems listed above: low-code apps can be built
much faster than hand-coded apps, and they can be built by people with less technical skill sets
than actual software engineers, a fact which dramatically increases available human resources.
Shorter development cycles and more hands on deck is definitely a step in the right direction.

However, the other, perhaps bigger problem mentioned above (digital business will require soft-
ware that can self adapt to continual changes) will demand a technology far in advance of the
current low-code standard, which is code generation.

AN EMERGING SOFTWARE SOLUTION
• BAKED-IN = NON-RESPONSIVE
Virtually all low-code platforms use a declarative approach that produces application models.
Most of today’s low-code platforms must then transform the visual model into an actual soft-
ware application through a process known as code generation, which, as the name implies,
converts the model into low-level computer code. This code must then be compiled, linked,
and executed. In other words, once a low-code app is deployed, it is no different than any other
hand-coded app, having baked-in features and functionality.

Exacerbating the problems of “baked-in,” such apps, in order to run, must be loaded in their
entirety into a process (workflow) engine, where they will live throughout execution. This per-
manent residence in the engine accounts for much of the shortfall of today’s software in regard
to digital business, and here’s why:

When a business or technical requirement changes (remember that constant change is the
hallmark of digital business), the state of each running instance of the app must be preserved
while the app is taken out of memory. Modifications are then made to the model, at which point
the model must once again go through the code-gen process. The resulting modified code must
then be recompiled, loaded back into memory, and reconciled with the preserved state of each
running instance of the app.

The sheer weight of the machinery involved in this endlessly recurring cycle brings the dig-
ital-business problem into specific relief: An app with baked-in features that must live, in its
entirety, in a process engine throughout execution is dysfunctional in an environment where
application characteristics must continually change.

PAGE.6

AN EMERGING SOFTWARE SOLUTION
Runtime Updates

A model-driven architecture combined with an XML-based
process engine results in apps that can be modified at run-
time—as new business conditions are pushed into the model,
the underlying code is modified, and the running application
changes mid flight. Depending on the application in ques-
tion, updates to components could be made manually—a
system admin or, perhaps, a line manager, entering data into
component dialogs. But with digital-business apps, modi-
fications are more likely to be made programmatically, via
feedback loops of fresh data from any of millions of devices
equipped with sensors and radio frequency tags.

• RESPONSIVE LOW-CODE PLATFORMS
What’s needed, then, to catalyze digital business is a new software development paradigm,
one that satisfies the quantity problem—lots of apps delivered fast—as well as the responsive
problem—software that can dynamically respond to the constantly changing conditions of
digital business. Responsive is, of course, the hard part.Most low-code platforms evolved from
BPM suites and simply don’t have architectures that support responsive-application develop-
ment. One low-code BPM that does is AgilePoint NX, which can be used to highlight requisite
responsive platform characteristics.

Model-Driven VS. Code Generation
In contrast to most low-code platforms, which produce static models for code generators,
AgilePoint NX incorporates a true, model-driven architecture. With this approach, each
component of a visual model constitutes metadata (stored in an XML registry) that defines
how an underlying chunk of code will work. For example, as a developer drags an activity
into a model, the relative positioning of the activity to other model components constitutes
metadata, and this metadata affects the underlying code. If a developer changes the relative
positioning of a component to other components, the underlying code, in turn, gets modified
to reflect the change. Likewise, any operational characteristics provided by the developer
(configurations typed into dialog windows) along with flow lines between components
constitute metadata, and all of it, taken in totality, is abstracted into application features
and functionality.

XML-Based Process Engine
As was mentioned above, with AgilePoint NX, the application model, itself, is XML. In execu-
tion, the model (XML registry file) is fed directly into the process engine. Note that, in con-
trast to traditional compiled apps, which must be fed into a process engine in their entirety,
an AgilePoint XML-based model can be processed one component at a time. This piece-by-
piece approach reduces storage and processing requirements, but, more importantly, enables
components not currently in memory to undergo modifications. Under any circumstances,
any part of a model is in memory only while it’s in use (for a fraction of a second at a time)
and then is removed. And once a component is no longer in memory, it can be modified.

PAGE.7

AN EMERGING SOFTWARE SOLUTION
• CONTINUOUSLY VARIABLE APPLICATIONS
 (CVAS)
If you’ve ever pulled a trailer up a steep mountain grade, you may have experienced your vehicle
repeatedly shifting back and forth between gears in an attempt to find a ratio that is appropriate
for constantly changing requirements. One gear is too low, the other is too high. In contrast,
continuously variable transmissions (CVTs) offer infinite gearing ratios, enabling a transmission,
based on external data sources, to deliver the optimal ratio at all times during the climb. Need-
less to say, the CVT approach is way better.

In some ways, the difference between a five-speed automatic transmission and a CVT can be lik-
ened to the difference between baked apps and responsive (continuously variable) apps. Baked
apps offer a predefined set of options to handle various conditions, but when actual conditions
vary from expected scenarios, the necessary permutations are not available. The app can be tak-
en offline and modified to account for new conditions (think adding a couple of extra ratios to a
transmission) but the same problem still exists—the machinery of adaption is not well suited to
a liquid business environment.

In contrast, responsive apps are architected in such a way that they can dynamically reconfig-
ure on the fly to account for any number of changing business conditions and technical re-
quirements, much the way a continuously variable transmission can generate any gearing ratio
necessary to account for hundreds of external factors. Just as CVTs are way better than regular
transmissions, responsive apps are way better than baked apps, especially when it comes to the
requirements of digital business.

PAGE.8

APPLICATION LIQUIDITY

PAGE.9

Regardless of the architecture that is used, software that is capable of catalyzing digital business must be

able to adapt to changes without recompilation and the baggage that goes along with it. AgilePoint NX

utilizes a mode-driven architecture, a metadata abstraction layer, and a stateless process engine to get the

desired results. Other platform vendors may get a similar result utilizing a different architectural design.

Digital Business will require
a Software Revolution

To learn more about AgilePoint NX, the Responsive
Application Platform, visit www.agilepoint.com.

Request Trial Request Demo

http://go.agilepoint.com/AgilePoint-NX-Trial.html
http://go.agilepoint.com/Demo-Request.html
http://agilepoint.com/resources-ebooks/

