
Bimodal IT: Innovating at the Pace
of Change with a Low-Code Platform

Page 2. Bimodal IT : Innovating at the Pace of Change with a Low-Code Platform

phase 1. Introduction

phase 2. Why Traditional Development Paradigms
 Won’t Work for Mode 2 Development

phase 3. Why Low-Code Platforms Are Well Suited for
 Mode 2 Development

 01. Pre-Built Services

 02. Declarative Frameworks

 03. Metadata Abstraction

 04. Model-Driven Architectures

 05. Extensive Extensibility

 06. Responsive Assets

 07. Mid-Execution Asset Management

phase 4. Is There a Downside to Low-Code?

Bimodal IT: Innovating at the Pace of
Change with a Low-Code Platform

The first (Mode 1) is traditional development

of applications and integrations using tried

and proven development techniques. Mode 1

is hierarchical, safe, and predictable, but it is

also, expensive, time consuming, and rigid.

The other (Mode 2) is non-hierarchical, highly

adaptive to context, innovative, and potentially

disruptive. Mode 2 emphasizes speed, agility,

and short development cycles.

For Gartner, the two modes represent a sort

of Yin and Yang of IT—almost antithetical and,

yet, both essential and mutually complimentary,

if implemented correctly. Given that Mode 1

development is what IT departments have been

engaged in for decades, it’s safe to say that

Mode 2 development is of greater interest

today, as IT departments look to innovate at

the pace of change—not easy, to put it mildly.

Introductionphase 1.

Page 2. Introduction

For the last few years, Gartner has been preaching the doctrine of bimodal
IT, contending that today’s digital enterprises need to sustain two types of
software development efforts.

Mode 2

Mode 1
• Traditional
• Hierarchical
• Expensive
• Predictable

• Shortened Development Cycles
• Potentially Disruptive
• Innovative

• Highly Adaptive

• Fast
• Agile
• Non-Hierarchical

• Safe
• Rigid
• Time Consuming

As was already stated, the emphasis with Mode 2
initiatives is speed and agility—the primary vehicles
for innovation. With Mode 2, over-planning is the
enemy, failing has to be okay, and learning happens
along the way.

Given the objectives of Mode 2, a traditional software
development paradigm can’t easily be applied. Traditional
development projects are expensive and time and
resource intensive, a reality that gives way to extensive
planning. A measure-twice-cut-once mentality must
be the standard in a world of hand -coded apps written
against system APIs. But this old-school approach doesn’t
lend itself well to the more liquid requirements of
experimental application development.

Page 4. Why Traditional Development Paradigms Won’t Work for Mode 2 Development

Why Traditional Development Paradigms Won’t Work for Mode 2 Developmentphase 2.

Why Low-Code Platforms Are Well Suited for Mode 2 Developmentphase 3.

In contrast to the traditional development paradigm, low-code
platforms (code-optional platforms) have been designed from
the ground up for Mode 2 scenarios. Of course, not all low-code
platforms are created equally. But assuming you choose a true,
enterprise-class platform, here are several reasons why it will
catalyze your Mode 2 agenda.

Page 5. Why Low-Code Platforms Are Well Suited for Mode 2 Development

01. Pre-Built Services

Imagine that you need to build a new business application
but that time, money, and human resources are at a
premium. If your plan was to hand code such an app, you
would first have to write a bunch of supporting code—
for example, the application services layer and a database
layer—as well as all the basic plumbing and generic
functionality that business applications typically need.

In contrast, with a low-code platform, you’d have, out
of the box, a web-based, easy-to-configure, application-
development framework that would allow you to design
and build a sophisticated data model with complex
workflow, reporting, and a bunch of other available,
prebuilt services.

This low-code platform would also automatically render
for your users a modern, customizable, browser-based
user interface.

Again, assuming you’ve got an enterprise-class platform,
it will be JavaScript, flash, and Ajax compliant, having lists,
forms, dialogues, and all the navigation elements typically
required by business apps. It will provide supporting layers
for SOAP and RESTful web services, email and notification
services, and resulting applications will be responsive to
devices and browsers. Furthermore, your low-code apps
will be supported by a flexible, configurable, robust security
model with everything easily and rapidly deployable into
a highly scalable online environment for any number of

users—all of this with no effort to build out a supporting
hardware infrastructure, middle-tier-logic, database layers,
backup services, workflow engines, web service APIs, and
so on.

In short, the pre-built services available with low-code plat-
forms dramatically speed the application development cycle,
in turn, lowering cost and other resource requirements, and
paving the way for experimental app development.

Why Low-Code Platforms Are Well Suited for Mode 2 Developmentphase 3.

02. Declarative Frameworks

03. Metadata Abstraction

With a low-code platform, a citizen developer (business expert/non programmer) can build a powerful application
by dragging forms, activities (actions, for the Microsoft crowd), and various types of controls onto a canvas, and
then configuring each according to app specifications. The result is a graphical model that depicts all application
componentry, as well as flow and inter-relationships of components.

The application components are pre-built by the platform vendor and will enable the construction of cross-functional
apps that will incorporate activities from major line of business systems (SharePoint, SAP, Oracle, NetSuite, Sales-
force, Marketo, etc.) as well as storage utilities (Box, OneDrive, Google Drive, OneDrive, etc.), eSignature systems
(DocuSign, Sertifi, etc.) and other core technologies (MySQL, SQL Server, .NET, etc.)

Perhaps the best part is this: Because of this declarative framework, some or all of these low-code apps can be
built by staff members outside the IT department, a fact which will likely expand your pool of available resources
and enable business users to participate in development cycles.

With the types of model-driven applications produced by low-code platforms, a developer determines application
characteristics by defining metadata, rather than by writing low-level computer code, toggling switches on or off,
or using tables or configuration files. The application model is an abstraction that allows anyone (IT staff or citizen
developers) to more easily manipulate any or all facets of an application, such as an information model, a process
model, or a user interface model, by simply entering information into fields on forms. And this information (metadata)
defines the characteristics of each activity, form, or other control.

It’s this characteristic—low-code, model-based applications are metadata-driven—that makes low-code apps quick-to-
build, quick-to-change, quick-to-deploy, and, just as importantly for Mode 2, easy to jettison, if they don’t work out.

Page 6. Why Low-Code Platforms Are Well Suited for Mode 2 Development

Why Low-Code Platforms Are Well Suited for Mode 2 Developmentphase 3.

04. Model-Driven Architectures

05. Extensive Extensibility

The term “technical debt” is bandied around quite a lot these days, and, while it can be
applied in a number of different ways, one of the most common has to do with hand-
coded apps written against system APIs. While APIs make cross-system integration
readily available, such hand-coded apps and integrations become legacy debt the minute
they are deployed. The debt, of course, takes the form of ongoing maintenance, which
must be performed by software engineers, and can never be repaid—maintenance must
be performed throughout the code’s useful life. Consequently, over the course of time,
an organization’s technical debt begins to resemble, well, the national debt—unimagin-
ably large and growing out-of-control.

The good news is low-code application models are the solution to a significant percentage
of the technical-debt problem. Rather than an ever growing mountain of spaghetti code,
new app development, as well as integrations across systems, take the form of easy-
to-understand models. Beyond the fact that these model-based apps are dramatically
easier to build than traditional, hand-coded apps, the models actually serve as run-time
interfaces for system administrators, who can monitor with a glance the stage at which
a process instance has progressed.

Because these models are easy to understand,

• they can function as departmental APIs—visual guides of operational procedures
 to departmental and non-departmental staff.

• they can be maintained by anyone with process knowledge and platform
 credentials.

It all comes down to a technical balance sheet. Where hand-coded apps written against
system APIs become ongoing costs, clearly on the Debt side, low-code application

So what’s the difference between “no-code” and “low-code”? Well, assuming there really
is such a thing as a no-code platform, it would be based on the notion that every conceivable
activity, form control, etc. imaginable for every system and web service in use at any given
time would be pre-built by the vendor. The other alternative, of course, would be an
acknowledgement by the vendor that its no-code platform simply couldn’t do everything
any particular customer might need, which would tend to dampen long-term prospects.

In contrast, vendors of low-code platforms assume going in that powerful, sophisticated
business applications may require something beyond what their respective platforms
currently provide and make extensibility available at every level. Visually composed
eForms that, under the hood, consist of HTML5 and JavaScript, can be modified however
a developer wants. Existing coded objects in whatever language can be integrated into a
low-code application, and programmers can develop their own activities and controls as
needed.

The point with this level of extensibility is that a true, enterprise-class, low-code platform
will be equipped to build just about any kind of business application you could come up
with. And knowing that there really is no glass ceiling with low-code platforms is a gigantic
security blanket—you’ll never have to abandon a promising, experimental application
because your platform won’t go where you need it to. (Again, make sure you choose a
platform that can play at this level.)

Page 7. Why Low-Code Platforms Are Well Suited for Mode 2 Development

models pull their own weight. They require maintenance, of course, but, relatively speaking,
very little, and once they’re built, deliver value beyond the software functionality they provide
on an ongoing basis. Put another way, low-code models are technical assets.

Why Low-Code Platforms Are Well Suited for Mode 2 Developmentphase 3.

06. Responsive Assets 07. Mid-Execution Asset Management

So, you’ve heard of responsive websites, which will reconfigure on-the-fly to fit different
devices. Well, elite low-code platforms will not only dynamically reconfigure forms—add-
ing, resizing, or eliminating fields and other controls—to fit devices, but low code apps can
be easily configured at the component level (forms/activities/controls) to fit the needs of
disparate business units; can be designed, in some use cases, to self adapt to changing
business conditions; and can be modified at runtime, all without coding. Put another way,
a single, low-code app can be repurposed any number of different times and ways, and
all instances can run in parallel. Good luck pulling that off with Java/Python/etc. on an
experimental schedule and budget.

NOTE: To learn more about this level of functionality, drop us a line. We’ll be happy
to show you how an elite BPM-enabled Application Platform as a Service can do all
of this and more.

In a June 2014 publication, Forrester divided the low-code space into three sectors:
general app platforms, web content platforms, and business process platforms (BPMS).
The last one—BPMS—is especially applicable for most IT departments, these days,
because of the need to build workflow-centric apps that are triggered by events.

And there are two key characteristics of process apps that must be noted: First, business
requirements for these types of composite process apps tend to change frequently,
which changes must be reflected in the apps; and second, organizational processes
could take months—even years—to complete.

Furthermore, depending on your organization, you could have dozens, hundreds, or
thousands of processes in mid-execution at any given time, which brings up an important
question: What happens if you’ve got thousands of instances of long-running processes
mid-execution and one or more important business requirements or conditions change?

In such a scenario, taking a process app offline to fix it is almost unthinkable—all sub
processes would be orphaned, and your organization would have to start all running
processes over. And yet that’s exactly what you’d need to do if you had hand coded such
process apps. But take fair warning—choosing a low-code platform that doesn’t allow
for mid-flight updates will leave you with the similar sort of Sophie’s choice scenario.

The good news is that elite BPMS-enabled low-code platforms are built to handle exactly
this sort of inevitable scenario, a fact which helps validate their Mode 2 credentials.

Page 8. Why Low-Code Platforms Are Well Suited for Mode 2 Development

Is There a Downside to Low-Code?phase 4.

What I’m describing is the state of the art for low-code platforms, especially the ones that
emphasize process-centric capabilities. But that doesn’t mean there won’t be challenges.
Power and sophistication breed complexity. Consequently, enterprise-class, low-code
platforms are the domain of power users—those who understand computing at a deep
level and have the experience and skills necessary to learn and utilize the extensive
features of such platforms. In other words, not just anyone can do it.

Obviously, not all platforms have pre-built stencils (collections of activities) for every
software system and business application. So choose your low-code platform carefully,
and beware of the fact that you may need to call on your IT department to extend
platform functionality in some situations.

Page 9. Is There a Downside to Low-Code?

To learn more about AgilePoint NX, the Responsive
Application Platform, visit www.agilepoint.com.

Bimodal IT: Innovating at the Pace
of Change with a Low-Code Platform

Request Trial Request Demo

http://agilepoint.com/resources-ebooks/
http://go.agilepoint.com/AgilePoint-NX-Trial.html
http://go.agilepoint.com/Demo-Request.html

